Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epigenomes ; 6(4)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36278680

RESUMO

The combination of ever-increasing microscopy resolution with cytogenetical tools allows for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative and quantitative methodologies to detect and interpret chromatin sub-nuclear organization dynamics is crucial to decipher the underlying molecular processes. Having access to properly automated tools for accurate and fast recognition of complex nuclear structures remains an important issue. Cognitive biases associated with human-based curation or decisions for object segmentation tend to introduce variability and noise into image analysis. Here, we report the development of two complementary segmentation methods, one semi-automated (iCRAQ) and one based on deep learning (Nucl.Eye.D), and their evaluation using a collection of A. thaliana nuclei with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these developments, we highlight advantages of semi-automated and deep learning-based analyses applied to plant cytogenetics.

2.
New Phytol ; 236(2): 333-349, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35949052

RESUMO

The plant nucleus provides a major hub for environmental signal integration at the chromatin level. Multiple light signaling pathways operate and exchange information by regulating a large repertoire of gene targets that shape plant responses to a changing environment. In addition to the established role of transcription factors in triggering photoregulated changes in gene expression, there are eminent reports on the significance of chromatin regulators and nuclear scaffold dynamics in promoting light-induced plant responses. Here, we report and discuss recent advances in chromatin-regulatory mechanisms modulating plant architecture and development in response to light, including the molecular and physiological roles of key modifications such as DNA, RNA and histone methylation, and/or acetylation. The significance of the formation of biomolecular condensates of key light signaling components is discussed and potential applications to agricultural practices overviewed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , DNA , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Luz , Plantas/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo
3.
J Exp Bot ; 73(16): 5400-5413, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35595271

RESUMO

Polycomb-group (PcG) proteins are major chromatin complexes that regulate gene expression, mainly described as repressors keeping genes in a transcriptionally silent state during development. Recent studies have nonetheless suggested that PcG proteins might have additional functions, including targeting active genes or acting independently of gene expression regulation. However, the reasons for the implication of PcG proteins and their associated chromatin marks on active genes are still largely unknown. Here, we report that combining mutations for CURLY LEAF (CLF) and LIKE HETEROCHROMATIN PROTEIN1 (LHP1), two Arabidopsis PcG proteins, results in deregulation of expression of active genes that are targeted by PcG proteins or enriched in associated chromatin marks. We show that this deregulation is associated with accumulation of small RNAs corresponding to massive degradation of active gene transcripts. We demonstrate that transcriptionally active genes and especially those targeted by PcG proteins are prone to RNA degradation, even though deregulation of RNA degradation following the loss of function of PcG proteins is not likely to be mediated by a PcG protein-mediated chromatin environment. Therefore, we conclude that PcG protein function is essential to maintain an accurate level of RNA degradation to ensure accurate gene expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Regulação da Expressão Gênica de Plantas , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Estabilidade de RNA/genética
4.
New Phytol ; 234(3): 850-866, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35175638

RESUMO

Reactive oxygen species (ROS) release seed dormancy through an unknown mechanism. We used different seed dormancy-breaking treatments to decipher the dynamics and localization of ROS production during seed germination. We studied the involvement of ROS in the breaking of Arabidopsis seed dormancy by cold stratification, gibberellic acid (GA3 ) and light. We characterized the effects of these treatments on abscisic acid and gibberellins biosynthesis and signalling pathways. ROS, mitochondrial redox status and peroxisomes were visualized and/or quantified during seed imbibition. Finally, we performed a cytogenetic characterization of the nuclei from the embryonic axes during seed germination. We show that mitochondria participate in the early ROS production during seed imbibition and that a possible involvement of peroxisomes in later stages should still be analysed. At the time of radicle protrusion, ROS accumulated within the nucleus, which correlated with nuclear expansion and chromatin decompaction. Taken together, our results provide evidence of the role of ROS trafficking between organelles and of the nuclear redox status in the regulation of seed germination by dormancy.


Assuntos
Arabidopsis , Dormência de Plantas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/metabolismo , Giberelinas/farmacologia , Dormência de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/fisiologia
5.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944040

RESUMO

Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.


Assuntos
Afídeos/fisiologia , Cálcio/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio , Caulimovirus/fisiologia , Mutação/genética , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...